Multiple Types of AI and Their Performance in Video Games

Author:

Prăjescu Iulian, ,Călin Alina DeliaORCID,

Abstract

"In this article, we present a comparative study of Artificial Intelligence training methods, in the context of a racing video game. The algorithms Proximal Policy Policy Optimization (PPO), Generative Adversarial Imitation Learning (GAIL) and Behavioral Cloning (BC), present in the Machine Learning Agents (ML-Agents) toolkit have been used in several scenarios. We measured their learning capability and performance in terms of speed, correct level traversal, number of training steps required and we explored ways to improve their performance. These algorithms prove to be suitable for racing games and the toolkit is highly accessible within the ML-Agents toolkit. Keywords and phrases: racing game, PPO, GAIL, behavioral cloning, AI in games. "

Publisher

Babes-Bolyai University

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference23 articles.

1. "[1] Berndt, C., Watson, I., and Guesgen, H. Oasis: an open ai standard interface specification to support reasoning, representation and learning in computer games. In IJCAI-05 Workshop on Reasoning, Representation, and Learning in Computer Games (2005), Citeseer, pp. 19-24.

2. [2] Bhattacharyya, R., Wulfe, B., Phillips, D., Kuefler, A., Morton, J., Senanayake, R., and Kochenderfer, M. Modeling human driving behavior through generative adversarial imitation learning. arXiv preprint arXiv:2006.06412 (2020).

3. [3] Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P., Jackel, L. D., Monfort, M., Muller, U., Zhang, J., et al. End to end learning for self-driving cars. arXiv preprint arXiv:1604.07316 (2016).

4. [4] Fan, X., Wu, J., and Tian, L. A review of artificial intelligence for games. Artificial Intelligence in China (2020), 298-303.

5. [5] Giusti, A., Guzzi, J., Cires,an, D. C., He, F.-L., Rodr'ıguez, J. P., Fontana, F., Faessler, M., Forster, C., Schmidhuber, J., Caro, G. D., Scaramuzza, D., and Gambardella, L. M. A machine learning approach to visual perception of forest trails for mobile robots. IEEE Robotics and Automation Letters 1, 2 (2016), 661-667.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3