Facilitating Model Training With Automated Techniques

Author:

,Mursa Bogdan-Eduard-MădălinORCID,Kuti-Kreszács MátyásORCID, ,Moroz-Dubenco CristianaORCID, ,Bota FlorentinORCID,

Abstract

Automating artificial intelligence (AI) model training has emerged as a significant challenge in the field of automation. The complete pipeline from raw data to model deployment poses the need to define robust processes that ensure the efficiency of the services that expose the models. This paper introduces a generic architecture for automating data preparation, training of models, selection of models, and deployment of models as web services for third-party consumption using Microsoft Azure Machine Learning’s (AzureML) CI/CD tools. We conducted a practical experiment utilizing AzureML pipelines with predefined and custom modules, demonstrating its readiness for integration into any production application. We also successfully integrated this architecture into a real-world product designed for industrial forecasting. This practical implementation demonstrates the effectiveness and adaptability of our approach, indicating its potential to address diverse training needs. Keywords and phrases: Artificial Intelligence, Automation, Optimization.

Publisher

Babes-Bolyai University Cluj-Napoca

Reference28 articles.

1. "1. Gartner. https://www.gartner.com/en. Accessed: June 16, 2023.

2. 2. Swagger: The world's most popular framework for apis. https://swagger.io, 2022. Accessed: Feb. 7, 2022.

3. 3. Algorithmia. 2021 state pf enterprise ml. https://info.algorithmia.com/hubfs/ 2020/Reports/2021-Trends-in-ML/Algorithmia_2021_enterprise_ML_trends.pdf. Accessed: June 9, 2023.

4. 4. Ashmore, R., Calinescu, R., and Paterson, C. Assuring the machine learning lifecycle: Desiderata, methods, and challenges. ACM Computing Surveys (CSUR) 54, 5 (2021), 1-39.

5. 5. Boer, A., Koolen, M., van den Berg, J., and van der Werf, J. Continuous delivery pipelines: Best practices in safe. In 2018 IEEE 15th International Conference on e-Business Engineering (ICEBE) (2018), IEEE, pp. 217-224.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3