Invariant Regions and Global Existence of Uniqueness Weak Solutions for Tridiagonal Reaction-Diffusion Systems

Author:

,Barrouk NabilaORCID,Abdelmalek KarimaORCID, ,Redjouh MounirORCID,

Abstract

In this paper we study the existence of uniqueness global weak solutions for m × m reaction-diffusion systems for which two main properties hold: the positivity of the weak solutions and the total mass of the components are preserved with time. Moreover, we suppose that the non-linearities have critical growth with respect to the gradient. The technique we use here in order to prove global existence is in the same spirit of the method developed by Boccardo, Murat, and Puel for a single equation. Keywords: Semigroups, local weak solution, global weak solution, reaction- diffusion systems, invariant regions, matrice of diffusion.

Publisher

Babes-Bolyai University Cluj-Napoca

Reference29 articles.

1. "1. Abdelmalek, S., Existence of global solutions via invariant regions for a generalized reaction-diffusion system with a tridiagonal Toeplitz matrix of diffusion coefficients, Functional Analysis: Theory, Methods and Applications, 2(2016), 12-27.

2. 2. Abdelmalek, S., Invariant regions and global solutions for reaction-diffusion systems with a tridiagonal symmetric Toeplitz matrix of diffusion coefficients, Electron. J. Differential Equations., 2014(2014), no. 247, 1-14.

3. 3. Abdelmalek, S., Invariant regions and global existence of solutions for reaction-diffusion systems with a tridiagonal matrix of diffusion coefficients and nonhomogeneous boundary conditions, Appl. Math., (2007), 1-15.

4. 4. Abdelmalek, S., Kouachi, S., Proof of existence of global solutions for m-component reaction-diffusion systems with mixed boundary conditions via the Lyapunov functional method, Phys. A., 40(2007), 12335-12350.

5. 5. Abdelmalek, K., Rebiai, B., Abdelmalek, S., Invariant regions and existence of global solutions to generalized m-component reaction-diffusion system with tridiagonal symmetric Toeplitz diffusion matrix, Adv. Pure Appl. Math., 12(1)(2021), 1-15.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3