Author:
Elin Mark, ,Jacobzon Fiana, ,
Abstract
"We study the FeketeSzego problem on the open unit ball of a complex Banach space. Namely, the FeketeSzego inequalities are proved for the class of spirallike mappings relative to an arbitrary strongly accretive operator, and some of its subclasses. Next, we consider families of non-linear resolvents for holomorphically accretive mappings vanishing at the origin. We solve the Fekete- Szego problem over these families."
Reference27 articles.
1. "[1] Bracci, F., Contreras, M.D., Diaz-Madrigal, S., Regular poles and beta-numbers in the theory of holomorphic semigroups, Constr. Approx., 37(2013), 357-381.
2. [2] Chirila, T., Subclasses of biholomorphic mappings associated with g-Loewner chains on the unit ball in Cn, Complex Var. Elliptic Equ., 59(2014), 1456-1474.
3. [3] Curt, P., Kohr, G., Kohr, M., Homeomorphic extension of strongly spirallike mappings in Cn, Sci. China Math., 53(2010), 87-100.
4. [4] D lugosz, R., Liczberski, P., Some results of Fekete-Szego type for Bavrin's families of holomorphic functions in Cn, Ann. Mat. Pura Appl., 200(2021), 1841-1857.
5. [5] Duren, P.L., Univalent Functions, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1983.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献