Author:
Afanas'eva Elena, ,Golberg Anatoly,Salimov Ruslan, , ,
Abstract
"We study the distortion features of homeomorphisms of Sobolev class $W^{1,1}_{\rm loc}$ admitting integrability for $p$-outer dilatation. We show that such mappings belong to $W^{1,n-1}_{\rm loc},$ are differentiable almost everywhere and possess absolute continuity in measure. In addition, such mappings are both ring and lower $Q$-homeomorphisms with appropriate measurable functions $Q.$ This allows us to derive various distortion results like Lipschitz, H\""older, logarithmic H\""older continuity, etc. We also establish a weak bounded variation property for such class of homeomorphisms."
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献