Author:
Kohr Mirela, ,Labrunie Simon,Mohsen Hassan,Nistor Victor, , , ,
Abstract
"Let $P : \CI(M; E) \to \CI(M; F)$ be an order $\mu$ differential operator with coefficients $a$ and $P_k := P : H^{s_0 + k +\mu}(M; E) \to H^{s_0 + k}(M; F)$. We prove polynomial norm estimates for the solution $P_0^{-1}f$ of the form $$\|P_0^{-1}f\|_{H^{s_0 + k + \mu}(M; E)} \le C \sum_{q=0}^{k} \, \| P_0^{-1} \|^{q+1} \,\|a \|_{W^{|s_0|+k}}^{q} \, \| f \|_{H^{s_0 + k - q}},$$ (thus in higher order Sobolev spaces, which amounts also to a parametric regularity result). The assumptions are that $E, F \to M$ are Hermitian vector bundles and that $M$ is a complete manifold satisfying the Fr\'echet Finiteness Condition (FFC), which was introduced in (Kohr and Nistor, Annals of Global Analysis and Geometry, 2022). These estimates are useful for uncertainty quantification, since the coefficient $a$ can be regarded as a vector valued random variable. We use these results to prove integrability of the norm $\|P_k^{-1}f\|$ of the solution of $P_k u = f$ with respect to suitable Gaussian measures."
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. The Stokes operator on manifolds with cylindrical ends;Journal of Differential Equations;2024-10
2. Sparsity for Holomorphic Functions;Analyticity and Sparsity in Uncertainty Quantification for PDEs with Gaussian Random Field Inputs;2023
3. Estimations polynomiales pour les problèmes de transmission sur des domaines à bords plats;Tunisian Journal of Mathematics;2022-12-31