Author:
Kaddour Mosbah, ,Messelmi Farid, ,
Abstract
"This work studies the initial boundary value problem for the Petrovsky equation with nonlinear damping \begin{equation*} \frac{\partial ^{2}u}{\partial t^{2}}+\Delta ^{2}u-\Delta u^{\prime} +\left\vert u\right\vert ^{p-2}u+\alpha g\left( u^{\prime }\right) =\beta f\left( u\right) \text{ in }\Omega \times \left[ 0,+\infty \right[, \end{equation*} where $\Omega $ is open and bounded domain in $\mathbb{R}^{n}$ with a smooth boundary $\partial \Omega =\Gamma$, $\alpha$, and $\beta >0$. For the nonlinear continuous term $f\left( u\right) $ and for $g$ continuous, increasing, satisfying $g$ $\left( 0\right) $ $=0$, under suitable conditions, the global existence of the solution is proved by using the Faedo-Galerkin argument combined with the stable set method in $H_{0}^{2}\left( \Omega \right)$. Furthermore, we show that this solution blows up in a finite time when the initial energy is negative."
Reference12 articles.
1. "1. Adams, R.A, Sobolev Spaces, Academic Press, New York, 1975.
2. 2. Amroun, N.E., Benaissa, A., Global existence and energy decay of solution to a Petroesky equation with general dissipation and source term, Georgian Math. J., 13(2006), no. 3, 397-410.
3. 3. Dautray, R., Lions, J.L., Analyse Mathématique et Calcul Numérique pour les Sciences et les Techniques, vol. 3, Masson, Paris, 1985.
4. 4. Georgiev, V., Todorova, G., Existence of a solution of the wave equation with nonlinear damping and source terms, J. Differential Equations, 109(1994), no. 2, 295-308.
5. 5. Guesmia, A., Existence globale et stabilisation interne non linéaire d'un systèm de Petrovsky, Bull. Belg. Math. Soc. Simon Stevin, 5(1998), 583-594.