Author:
Mihailescu Mihai, ,Stancu-Dumitru Denisa, , , , , ,
Abstract
"The goal of this paper is to collect some known results on the monotonicity with respect to $p$ of the best constants associated with Sobolev immersions of type $W_0^{1,p}(\Omega)\hookrightarrow L^q(\Omega)$ when $q\in\{1,p,\infty\}$. More precisely, letting $$\lambda(p,q;\Omega):=\inf\limits_{u\in W_0^{1,p}(\Omega) \setminus\{0\}}{\|\;|\nabla u|_D\;\|_{L^p(\Omega)}}{\|u\|_{L^q(\Omega)}^{-1}}\,,$$ we recall some monotonicity results related with the following functions \begin{eqnarray*} (1,\infty)\ni p&\mapsto &|\Omega|^{p-1}\lambda(p,1;\Omega)^p\,,\\ (1,\infty)\ni p&\mapsto &\lambda(p,p;\Omega)^p\,,\\ (D,\infty)\ni p&\mapsto &\lambda(p,\infty;\Omega)^p\,, \end{eqnarray*} when $\Omega\subset \mathbb{R}^{D}$ is a given open, bounded and convex set with smooth boundary."
Reference32 articles.
1. "1. Benedikt, J., Drábek, P., Asymptotics for the principal eigenvalue of the p-Laplacian on the ball as p approaches 1, Nonlinear Anal., 93(2013), 23-29.
2. 2. Bhattacharya, T., DiBenedetto, E., Manfredi, J.J., Limits as p → ∞ of ∆pup = f and related extremal problems, Rend. Sem. Mat. Univ. Politec. Torino, Special Issue (1991), 15-68.
3. 3. Bobkov, V., Tanaka, M., On positive solutions for (p, q)-Laplace equations with two parameters, Calc. Var. Partial Differential Equations, 54(2015), 3277-3301.
4. 4. Bocea, M., Mihăilescu, M., Minimization problems for inhomogeneous Rayleigh quotients, Communications in Contemporary Mathematics, 20(2018), 1750074, 13 pp.
5. 5. Bocea, M., Mihăilescu, M., On the monotonicity of the principal frequency of the p-Laplacian, Adv. Calc. Var., 14(2021), 147-152.