Quasiconvex functions: how to separate, if you must!

Author:

Frenk Johannes Bartholomeus Gerardus, ,Gromicho Joaquim Antonio dos Santos,Zhang Shuzhong, , ,

Abstract

"Since quasiconvex functions have convex lower level sets it is possible to minimize them by means of separating hyperplanes. An example of such a procedure, well-known for convex functions, is the subgradient method. However, to nd the normal vector of a separating hyperplane is in general not easy for the quasiconvex case. This paper attempts to gain some insight into the computational aspects of determining such a normal vector and the geometry of lower level sets of quasiconvex functions. In order to do so, the directional di erentiability of quasiconvex functions is thoroughly studied. As a consequence of that study, it is shown that an important subset of quasiconvex functions belongs to the class of quasidifferentiable functions. The main emphasis is, however, on computing actual separators. Some important examples are worked out for illustration."

Publisher

Babes-Bolyai University

Subject

General Mathematics

Reference22 articles.

1. "[1] Clarke, F.H., Optimization and Nonsmooth Analysis, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1983.

2. [2] Crouzeix, J.-P., Some di erentiability properties of quasiconvex functions on Rn, In: Optimization and Optimal Control (Proc. Conf., Math. Res. Inst., Oberwolfach, 1980), vol. 30 of Lecture Notes in Control and Information Sci., Springer, Berlin - New York, 1981, pp. 9-20.

3. [3] Crouzeix, J.-P., About differentiability of order one of quasiconvex functions on Rn, J. Optim. Theory Appl., 36(1982), no. 3, 367-385.

4. [4] Crouzeix, J.-P., A review of continuity and di erentiability properties of quasiconvex functions on Rn, In: Convex Analysis and Optimization (London, 1980), vol. 57 of Res. Notes in Math., Pitman, Boston, Mass.-London, 1982, pp. 18-34.

5. [5] Dem'yanov, V.F., Dixon, L.C.W., Quasidi erential Calculus, vol. 29, North-Holland Sole Distributor for the U.S.A., Elsevier Science Publishers, Amsterdam - New York, N.Y., USA, 1986.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3