Author:
Choucha Abdelbaki, ,Ouchenane Djamel, ,
Abstract
" In this work, we are concerned with a problem for a viscoelastic wave equation with strong damping, nonlinear source and delay terms. We show the exponential growth of solutions with $L_{p}$-norm. i.e. $\displaystyle\lim_{t\rightarrow\infty}\Vert u\Vert_{p}^{p}\rightarrow\infty.$"
Reference25 articles.
1. "[1] Ball, J., Remarks on blow-up and nonexistence theorems for nonlinear evolutions equation, Quarterly Journal of Mathematics, 28(1977), 473-486.
2. [2] Berrimi, S., Messaoudi, S., Existence and decay of solutions of a viscoelastic equation with a nonlinear source, Nonlinear Analysis, 64 2006), 2314-2331.
3. [3] Bialynicki-Birula, I., Mycielsk, J., Wave equations with logarithmic nonlinearities, Bull Acad Polon Sci Ser Sci. Math. Astron Phys., 23(1975), 461-466.
4. [4] Cavalcanti, M.M., Cavalcanti, D., Ferreira, J., Existence and uniform decay for nonlinear viscoelastic equation with strong damping, Math. Meth. Appl. Sci., 24(2001), 1043-1053.
5. [5] Cavalcanti, M.M., Cavalcanti, D., Filho, P.J.S., Soriano, J.A., Existence and uniform decay rates for viscoelastic problems with nonlinear boundary damping, Differential and Integral Equations, 14(2001), 85-116.