The most under-used statistical method in corpus linguistics: multi-level (and mixed-effects) models

Author:

Th. Gries Stefan

Abstract

Much statistical analysis of psycholinguistic data is now being done with so-called mixed-effects regression models. This development was spearheaded by a few highly influential introductory articles that (i) showed how these regression models are superior to what was the previous gold standard and, perhaps even more importantly, (ii) showed how these models are used practically. Corpus linguistics can benefit from mixed-effects/multi-level models for the same reason that psycholinguistics can – because, for example, speaker-specific and lexically specific idiosyncrasies can be accounted for elegantly; but, in fact, corpus linguistics needs them even more because (i) corpus-linguistic data are observational and, thus, usually unbalanced and messy/noisy, and (ii) most widely used corpora come with a hierarchical structure that corpus linguists routinely fail to consider. Unlike nearly all overviews of mixed-effects/multi-level modelling, this paper is specifically written for corpus linguists to get more of them to start using these techniques more. After a short methodological history, I provide a non-technical introduction to mixed-effects models and then discuss in detail one example – particle placement in English – to show how mixed-effects/multi-level modelling results can be obtained and how they are far superior to those of traditional regression modelling.

Publisher

Edinburgh University Press

Subject

Linguistics and Language,Language and Linguistics

Cited by 158 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3