Enriching Portuguese Medieval Texts with Named Entity Recognition

Author:

Inês Bico MariaORCID,Baptista JorgeORCID,Batista FernandoORCID,Cardeira EsperançaORCID

Abstract

Historical data poses unique challenges to natural language processing (NLP) and information retrieval (IR) tools, including digitization errors, lack of annotated data, and diachronic-specific issues. However, the increasing recognition of the value in historical documents has promoted efforts to semantically enrich and optimize their analysis. This article contributes to this endeavour by enriching the Corpus de Textos Antigos through NLP tools and techniques to enhance its usability and support research. The corpus undergoes linguistic annotation, including part-of-speech tagging, lemma annotation and named entity recognition (NER). Subsequently, the article delves into the tasks of entity disambiguation and entity linking, which involve identifying and disambiguating named entities by referring to a knowledge base (KB). Addressing the challenges posed by factors such as text state, epoch and the chosen KB, the article presents insights into related work, annotation results and the linguistic interest of a medieval annotated corpus for named entities. It concludes by discussing the challenges and providing avenues for future research in this domain.

Publisher

Edinburgh University Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3