Author:
Murakami Akira,Thompson Paul,Hunston Susan,Vajn Dominik
Abstract
This paper introduces topic modelling, a machine learning technique that automatically identifies ‘topics’ in a given corpus. The paper illustrates its use in the exploration of a corpus of academic English. It first offers the intuitive explanation of the underlying mechanism of topic modelling and describes the procedure for building a model, including the decisions involved in the model-building process. The paper then explores the model. A topic in topic models is characterised by a set of co-occurring words, and we will demonstrate that such topics bring us rich insights into the nature of a corpus. As exemplary tasks, this paper identifies the prominent topics in different parts of papers, investigates the chronological change of a journal, and reveals different types of papers in the journal. The paper further compares topic modelling to two more traditional techniques in corpus linguistics, semantic annotation and keywords analysis, and highlights the strengths of topic modelling. We believe that topic modelling is particularly useful in the initial exploration of a corpus.
Publisher
Edinburgh University Press
Subject
Linguistics and Language,Language and Linguistics
Cited by
107 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献