‘What is this corpus about?’: using topic modelling to explore a specialised corpus

Author:

Murakami Akira,Thompson Paul,Hunston Susan,Vajn Dominik

Abstract

This paper introduces topic modelling, a machine learning technique that automatically identifies ‘topics’ in a given corpus. The paper illustrates its use in the exploration of a corpus of academic English. It first offers the intuitive explanation of the underlying mechanism of topic modelling and describes the procedure for building a model, including the decisions involved in the model-building process. The paper then explores the model. A topic in topic models is characterised by a set of co-occurring words, and we will demonstrate that such topics bring us rich insights into the nature of a corpus. As exemplary tasks, this paper identifies the prominent topics in different parts of papers, investigates the chronological change of a journal, and reveals different types of papers in the journal. The paper further compares topic modelling to two more traditional techniques in corpus linguistics, semantic annotation and keywords analysis, and highlights the strengths of topic modelling. We believe that topic modelling is particularly useful in the initial exploration of a corpus.

Publisher

Edinburgh University Press

Subject

Linguistics and Language,Language and Linguistics

Cited by 107 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3