Investigation into the control strategy for a long spine of Edinburgh Duck modules, using an efficient numerical model

Author:

Cotten Alfred,Forehand David I. M.

Abstract

An efficient numerical model of a spine of ten Edinburgh duck modules is developed. The spine joints and duck modules are modelled using a linear approach based on the theory of generalized modes, which mitigates the need for a more computationally expensive time- domain solver. This approach also allows for computation of the shear forces acting on the spine joints, and has the added benefit of enabling the use of complex conjugate control. The resulting hydrodynamic model is verified for a three duck spine against an alternative implementation that uses a nonlinear multibody solver to enforce the joint motions. A conservative weighted motion constraint is imposed on the controlled degrees of freedom of the ten duck spine, in order to ensure results stay within the bounds of the linear theory. Pertinent sections of the theory underpinning the constrained complex conjugate control method are elaborated upon for the case in which not all degrees of freedom are controlled. An implementation of this control method for a solo duck is compared against a result from the literature, in order to confirm the suitability of the choice of duck design in this study. The control force coefficients that maximise the absorbed power, subject to the motion constraint, are computed for the ten duck spine over a range of wave periods and wave heading angles. The resulting dynamics of the spine of ducks are explored, with particular emphasis on aspects related to the power extraction and forces acting within the system.

Publisher

European Wave and Tidal Energy Conference

Subject

Ocean Engineering,Renewable Energy, Sustainability and the Environment,Oceanography

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3