Development and Assessment of a Hybrid Breakwater-Integrated Wave Energy Converter

Author:

Calheiros-Cabral TomásORCID,Majidi Ajab Gul,Ramos Victor,Giannini Gianmaria,Rosa-Santos Paulo,Taveira-Pinto Francisco

Abstract

Harnessing and using marine renewable energy at seaports is a promising solution to put these energy-intensive infrastructures on the right track to energy self-sufficiency and environmental sustainability, reducing their carbon footprint. This paper presents a summary of the main conclusions and achievements of a recently concluded R&D project that encompassed the experimental study of an innovative hybrid wave energy converter integrated into a case-study rubble-mound breakwater in the Port of Leixões, Portugal. It also describes the prospective studies planned in two ongoing projects, PORTOS – Ports Towards Energy Self-Sufficiency and WEC4Ports – A hybrid Wave Energy Converter for Ports, intended to further develop and assess this promising technology. It has been demonstrated that its wave-to-wire efficiency and annual energy production are 27.3% and 35.0 MWh/m per year, respectively, for the case-study location. Hence, a 240 m long device could provide more than half of the port’s electricity consumption, which vows for the device’s potential. Moreover, the impact of its integration into the case-study breakwater showed that it leads to a 50% reduction of overtopping discharges over the structure, and no significant effects on the structure’s wave reflection, although the stability of the toe berm blocks was negatively impacted. Overall, the conclusions obtained are favourable to the integration of this technology into rubble-mound breakwaters. Notwithstanding, further research is still needed, namely in terms of wave forces acting upon the structure, important for the assessment of the functional performance and lifecycle readiness of the technology, and the use of PTO control strategies. This is being addressed in PORTOS and WEC4Ports projects.

Publisher

European Wave and Tidal Energy Conference

Subject

Ocean Engineering,Renewable Energy, Sustainability and the Environment,Oceanography

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3