Modelo de clasificación de depresión en Tweets usando BERT
-
Published:2023-09-30
Issue:2
Volume:4
Page:6-24
-
ISSN:2708-0935
-
Container-title:Innovación y Software
-
language:
-
Short-container-title:Innov. softw.
Author:
Aleman-Zambrano Guillermo José1ORCID, Del Carpio-Lazo Marvik Irzovic1ORCID, Mendiguri-Chávez Daniel Gustavo1ORCID, Vilchez-Silva Daniela Carolina1ORCID, Tejada Toledo Franco Eduardo1ORCID
Abstract
Hoy en día existen muchos indicios de depresión, así como muchos intentos de suicidio causados por este trastorno emocional, esto se ve reflejado mayormente en redes sociales principalmente en Twitter. Por ello, es importante que los especialistas y organizaciones que busquen salvaguardar la vida de las personas, utilicen herramientas de software que permitan abordar este problema. Para ello, en este trabajo se propone una herramienta web llamada “UBDevs-Depression-Classifier” que permite clasificar y obtener tweets de forma automática por algún tema específico. Se puso un mayor énfasis a tweets relacionados con el COVID-19 debido a que en los años 2020-2021 en el mundo se vivió una pandemia que incrementó los casos de depresión en muchos lugares. Esta propuesta de investigación se centra en la utilización en un modelo basado en NLP (Natural Language Processing) para la clasificación de Tweets con el fin de encontrar aquellos que inciten a la depresión o den a entender que los usuarios se encuentren en un mal estado de ánimo, todo ello con el fin de mantener la salud mental y física de los usuarios de esta plataforma. Existen varios modelos usados como base para proyectos de NLP, sin embargo, en la actualidad BERT ha demostrado ser uno de los más eficientes por ello lo seleccionamos para el desarrollo de nuestra propuesta. Para evaluar la eficiencia del proyecto aplicamos la métrica F1 obteniendo un valor de 0.8806, resultado bastante aceptable respecto a una clasificación textual.
Publisher
Universidad La Salle Arequipa
Reference23 articles.
1. Chen, F., Zheng, D., Liu, J., Gong, Y., Guan, Z., & Lou, D. (2020). Depression and anxiety among adolescents during COVID-19: A cross-sectional study. Brain, behavior, and immunity, 88, 36. 2. Islam, M. A., Barna, S. D., Raihan, H., Khan, M. N. A., & Hossain, M. T. (2020). Depression and anxiety among university students during the COVID-19 pandemic in Bangladesh: A web-based cross-sectional survey. PloS one, 15(8), e0238162. 3. Lee, S. A., Jobe, M. C., Mathis, A. A., & Gibbons, J. A. (2020). Incremental validity of coronaphobia: Coronavirus anxiety explains depression, generalized anxiety, and death anxiety. Journal of anxiety disorders, 74, 102268. 4. Santini, Z. I., Jose, P. E., Cornwell, E. Y., Koyanagi, A., Nielsen, L., Hinrichsen, C., ... & Koushede, V. (2020). Social disconnectedness, perceived isolation, and symptoms of depression and anxiety among older Americans (NSHAP): a longitudinal mediation analysis. The Lancet Public Health, 5(1), e62-e70. 5. Bhuiyan, A. I., Sakib, N., Pakpour, A. H., Griffiths, M. D., & Mamun, M. A. (2020). COVID-19-related suicides in Bangladesh due to lockdown and economic factors: case study evidence from media reports. International Journal of Mental Health and Addiction, 1-6.
|
|