Calcium chloride acceleration in ordinary Portland cement

Author:

Vehmas Tapio1,Kronlöf Anna2,Cwirzen Andrzej3

Affiliation:

1. Research Scientist, VTT Technical Research Centre of Finland, Espoo, Finland (corresponding author: )

2. Principal Scientist, VTT Technical Research Centre of Finland, Espoo, Finland

3. Professor, Holder of a Chair, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå, Sweden

Abstract

Early-age hydration of ordinary Portland cement is now acknowledged to originate from nucleation and crystal growth of calcium–silicate–hydrates. The acceleration mechanism of water-soluble inorganic substances, such as calcium chloride, is still unclear. In the present study, the acceleration mechanism was approached in two independent ways. First, the acceleration effect of filler materials (limestone and quartz powder) and calcium chloride (CaCl2) were studied experimentally with a conduction calorimeter. Second, the calcium chloride effect was studied with thermodynamic modelling. The experimental test results showed that the filler materials accelerated the acceleration period of ordinary Portland cement hydration, whereas calcium chloride accelerated hydration throughout the 24 h measuring period. A synergistic effect was observed with fillers and calcium chloride. Thermodynamic modelling indicated that calcium chloride provides a supersaturation with respect to pure calcium–silicate–hydrate. It was concluded that the supersaturation provides a qualitative explanation for both calcium chloride-induced acceleration and the synergistic effect observed with fillers.

Publisher

Thomas Telford Ltd.

Subject

General Materials Science,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3