Modelling of cryogenic processes in permafrost and seasonally frozen soils

Author:

Thomas H. R.1,Cleall P.1,Li Y.-C.1,Harris C.2,Kern-Luetschg M.2

Affiliation:

1. Geoenvironmental Research Centre, Cardiff School of Engineering, Cardiff University Wales, UK

2. School of Earth Sciences, Cardiff University Wales, UK

Abstract

This paper investigates the thermo-hydro-mechanical (THM) behaviour of soils subjected to seasonal temperature variations in both permafrost and seasonally frozen conditions. Numerical modelling of soil freezing and ice segregation processes is presented, and compared against small-scale physical modelling experiments. The coupled THM model presented, which is solved by way of a transient finite element approach, considers a number of processes, including conduction, convection, phase change, the movement of moisture due to cryogenic suctions, and the development of ice lenses. Two seasonal freezing scenarios are considered: (a) for soils with no permafrost, where freezing is from the surface downward (one-sided freezing); and (b) for soils underlain by permafrost, where large thermal gradients in the uppermost permafrost layer can cause active layer freezing in two directions, from the permafrost table upwards and from the ground surface downwards (two-sided freezing). In the case of one-sided freezing, ice lens formation occurs as the freezing front advances downwards from the surface, and is limited by water supply. However, during two-sided freezing, ice segregation takes place in a closed system, with ice lenses accumulating at the base of the active layer and near the ground surface, leaving an intervening ice-poor zone. Numerical modelling is able to represent the development of both the thermal field and ice segregation observed in the physical models. The significance of this contrasting ground ice distribution is considered in the context of thaw-related slow mass movement processes (solifluction).

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3