Bentonite THM behaviour at high temperatures: experimental and numerical analysis

Author:

Åkesson M.1,Jacinto A. C.2,Gatabin C.3,Sanchez M.4,Ledesma A.2

Affiliation:

1. Clay Technology AB Lund, Sweden

2. Technical University of Catalunya–UPC Barcelona, Spain

3. CEA Saclay, France

4. University of Strathclyde Glasgow, UK

Abstract

The Temperature Buffer Test is a heated full-scale field experiment carried out at the Äspö Hard Rock Laboratory in Sweden, simulating repository conditions for radioactive waste. The initial thermo-hydro-mechanical (THM) evolution in the clay barrier was investigated in a separate mock-up test. The paper describes this laboratory experiment and the corresponding numerical simulations. Most of the related work refers to THM analyses of bentonite barriers well below 100°C, but here higher temperatures are considered. A 20 cm closed specimen of compacted MX-80 bentonite was subjected to a temperature gradient (84°C and 120°C at the end points). The evolution of temperature, relative humidity, pore pressure and stresses was monitored at several points. The test was allowed to reach steady-state conditions. The specimen was then sampled and analysed in terms of water content and bulk density. Several finite element analyses considering different coupled THM interactions were performed, and compared with measurements. Bentonite properties were obtained from independent tests. Additionally, retention properties were also obtained from measured saturation ratios and steady-state suction values. For the mechanical problem the Barcelona Expansive Model was used, which includes explicitly the two structural levels that actually exist in expansive clays (macro- and microstructure). This model made it possible to simulate the evolution of stresses as well as the expansion of bentonite at the ‘cold’ side and the compression at the ‘hot’ side, using a single set of parameters.

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3