Calibrations of a high-suction tensiometer

Author:

Lourenço S. D. N.1,Gallipoli D.2,Toll D. G.3,Augarde C. E.3,Evans F. D.4,Medero G. M.5

Affiliation:

1. Geotechnical Observations Limited Egham, UK (formerly Durham University).

2. Department of Civil Engineering, University of Glasgow UK

3. School of Engineering, Durham University UK

4. Controls Testing Equipment Ltd, Wykeham Farrance Division Tring, UK

5. School of the Built Environment, Heriot-Watt University Edinburgh, UK

Abstract

High-suction tensiometers are able to measure suctions up to 2 MPa. Direct calibration at such high suctions requires the imposition of negative water pressures, which are difficult to achieve using facilities commonly available in soil mechanics laboratories. For this reason, tensiometers are usually calibrated in the positive pressure range, and such calibration is subsequently extrapolated to negative pressures. This paper examines different experimental techniques to assess the accuracy of such extrapolation. Any error in the calibration process would be directly reflected in the measured values of suction, and might be particularly significant (in relative terms) for the measurement of low suctions. In addition, the results of this study show that calibration in the positive range is affected both by the physical configuration of the tensiometer during calibration and by aspects of its design. The paper concludes that linear extrapolation of the calibration from the positive to the negative range is sufficiently accurate provided that calibration is done under conditions that closely match the conditions in which the tensiometer will be used. Owing to structural differences between tensiometers, and also to suction-induced ‘calibration hysteresis', at least one check on the accuracy of the extrapolated calibration equation over a range of negative pressure should be performed, even if at low values of suction.

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3