Uplift capacity of rapidly loaded strip anchors in uniform strength clay

Author:

Thorne C. P.1,Wang C. X.2,Carter J. P.1

Affiliation:

1. Department of Civil Engineering, The University of Sydney Australia

2. Faculty of Design, Architecture and Building The University of Technology Sydney Australia

Abstract

The behaviour of horizontal strip anchors buried in clay is examined in this paper. A brief critique of the various approaches suggested for the design of these anchors is presented, with emphasis placed on estimation of the ultimate load that these anchors can withstand when loaded rapidly in uplift under undrained conditions. Possible mechanisms of failure are reviewed, including shear and tensile failure within the soil and the development of suction within the pore fluid, and the results of finite element predictions are compared with experimental data for ultimate loads. The analyses reveal that the behaviour of strip anchors in uplift is a function of the following non-dimensional parameters: H/B, γH/c and uc/c, where H is the depth of embedment of the anchor, B is the width of the strip anchor, γ is the unit weight of the soil, c is its undrained shear strength, and uc is the magnitude of the maximum tensile stress that can be sustained by the pore water in the soil. It is demonstrated that the ultimate uplift capacity is dependent on the availability of water at the surface of the soil and within the soil beneath the strip anchor. The analyses also show that shallow anchors in relatively strong soil tend to fail by the development of tensile failure in the soil above the anchor. The ultimate capacity of these shallow anchors is a function of the undrained shear strength of the soil, its self-weight and the tensile capacity of the pore fluid. By contrast, the failure mechanism for deeply buried anchors where the initial vertical total stress at the plate exceeds 7c involves only localised shear failure around the anchor, and as a result the ultimate capacity effectively becomes a function only of the undrained shear strength of the soil.

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3