Coupling of hydraulic hysteresis and stress–strain behaviour in unsaturated soils

Author:

Wheeler S. J.1,Sharma R. S.2,Buisson M. S. R.3

Affiliation:

1. Department of Civil Engineering, University of Glasgow

2. Department of Civil and Environmental Engineering, University of Bradford

3. Terrasol France(formerly University of Glasgow)

Abstract

Consideration of the different roles of pore air pressure, pore water pressure within bulk water and pore water pressure within meniscus water suggests that the degree of saturation will have a significant influence on the stress–strain behaviour of an unsaturated soil, in addition to any influence of suction. This suggestion is supported by experimental evidence. In the light of this, a new elasto-plastic framework for unsaturated soils is proposed, involving coupling of hydraulic hysteresis and mechanical behaviour. Within the proposed framework, plastic changes of degree of saturation influence the stress–strain behaviour, and plastic volumetric strains influence the water retention behaviour. A specific constitutive model for isotropic stress states is proposed, and model predictions are compared with experimental results, in order to demonstrate some of the capabilities of the new framework. Forms of behaviour that can be represented include proper transitions between saturated and unsaturated types of response, the occurrence of irreversible compression during the drying stages of wetting–drying cycles, and the influence of a wetting–drying cycle on subsequent behaviour during isotropic loading.

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3