The undrained response of sands with additions of particles of various shapes and sizes

Author:

Georgiannou V. N.1

Affiliation:

1. Civil Engineering Department, National Technical University of AthensGreece

Abstract

As a natural deposit, sand is rarely found clean—that is, without fractions of silt or clay. The engineering behaviour of two different host sand gradations mixed with additions of particles of various shapes and sizes is compared with that of clean sand. Anisotropically consolidated specimens are sheared in triaxial compression and extension at their ‘loosest’ initial state resulting from the same depositional method, namely air pluviation. Additive materials at contents less than 2·5% by weight can dramatically change the undrained behaviour of the host sand. The addition of rotund particles (e.g. silt) should be distinguished from that of flat or platy particles of different size (e.g. kaolin, silt or sand-size mica). The importance of shape and location of additives in modifying the sand structure is not reflected in measures such as void ratio. Mixtures of both sands with silt-size mica exhibit the most unstable response, although these had the lowest values of void or granular void ratio. The undrained response of each sand mixed with different amounts of sand-size mica is also presented. An increase in mica content usually leads to more stable behaviour at contents above a certain threshold, depending on the grading of the sand. The shear response of the sands and most mixtures is much weaker and more contractive in triaxial extension than in triaxial compression. High anisotropy is also indicated by the stiffness measurements at small strains in both loading directions.

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3