Behaviour of jacked and driven piles in sandy soil

Author:

Yang J.1,Tham L. G.1,Lee P. K. K.1,Chan S. T.2,Yu F.1

Affiliation:

1. Department of Civil Engineering, The University of Hong Kong

2. Housing Department, The Government of the Hong Kong Special Administrative Region

Abstract

As an alternative to conventional dynamic pile installation methods, pile jacking is an environmentally friendly technique that could become more widely accepted. Great concern has arisen over the performance of jacked piles as compared with that of driven piles. This paper describes a comprehensive field study that was aimed at investigating the differences and similarities between the behaviour of jacked H-piles and that of driven H-piles. The instrumented piles, varying in length from 32 to 55 m and having a design capacity of up to 3540 kN, were installed in residual soils whose properties are close to silty sands. The load test results indicate that the shaft resistance of jacked piles is generally stiffer and stronger than that of driven piles, but the base resistance of jacked piles is weaker than that of driven piles. At a load level of twice the design capacity, the percentage of pile head load carried by base varies from 2% to 10% for jacked piles, with a mean value of 6%; for driven piles the percentage varies from 6% to 61% with a mean value of 38%. The back-calculated values of the shaft friction coefficient, β, were found to be in a range of 0·25–0·6 for both jacked and driven piles. A correlation was also observed between the ultimate shaft friction and the mean standard penetration test N value (N), which suggests that the shaft friction can be taken as 1·5N to 2N (kPa) for both jacked and driven H-piles.

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

Cited by 81 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3