The uplift resistance of pipes and plate anchors buried in sand

Author:

White D. J.1,Cheuk C. Y.2,Bolton M. D.3

Affiliation:

1. Centre for Offshore Foundation Systems, University of Western Australia Perth, Australia

2. Department of Civil Engineering, University of Hong Kong

3. Department of Engineering, University of Cambridge UK

Abstract

The design of buried anchors and pipelines requires assessment of the peak uplift resistance. This paper describes a limit equilibrium solution for the uplift resistance of pipes and plate anchors buried in sand. The geometry of this solution reflects observations from model tests. Peak angles of friction and dilation are found using established correlations that capture the influence of stress level and density. These angles govern the geometry of the failure mechanism and the mobilised resistance. The solution is validated using a database of 115 model tests on pipes and strip anchors assembled from the published literature. Good agreement with the overall database is shown, without optimisation of any input parameters. The method overpredicts the uplift resistance of smooth model pipes by ∼10%, highlighting the influence of pipe roughness. In contrast, it is shown that the solution for uplift resistance based on the limit theorems of plasticity is generally unconservative. The assumption of normality, which is required by the limit theorems, leads to an unrealistic failure mechanism involving uplift of a far wider zone of soil than is seen in model tests. Plasticity theory, with normality, is inappropriate for modelling this class of kinematically restrained problem in drained conditions, as normality is not observed. As finite element analysis is not routinely used in practice—partly owing to the difficulty in selecting appropriate input parameters to describe dilatancy and plastic flow—the simple analytical idealisation described in this paper provides a useful tool for uplift resistance prediction. Simple charts for the prediction of peak uplift resistance from critical state friction angle, relative density and normalised burial depth are presented, to aid the design of buried pipes and anchors.

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

Reference31 articles.

1. Barefoot A. J. Modelling the uplift resistance of buried pipes in a drum centrifuge. MPhil thesis, 1998, Cambridge University Engineering Department.

2. The strength and dilatancy of sands

3. The collapse of diaphragm walls retaining clay

4. Uplift Mechanisms of Pipes Buried in Sand

Cited by 148 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3