Random field characterisation of stress-nomalised cone penetration testing parameters

Author:

Uzielli M.1,Vannucchi G.1,Phoon K. K.2

Affiliation:

1. Department of Civil Engineering, University of Florence Italy

2. Department of Civil Engineering, National University of Singapore

Abstract

Random field modelling of soil variability allows significant statistical results to be inferred from field data; moreover, it provides a consistent framework for incorporating such variability in reliability-based design. Cone penetration testing (CPT) is increasingly appreciated because of its near-continuity and repeatability. Stress-normalised CPT parameters are included in widely used engineering procedures. Nonetheless, the results of variability analyses for these parameters are surprisingly limited. This paper attempts to characterise normalised cone tip resistance (qc1N) and friction ratio (FR) rigorously using a finite-scale weakly stationary random field model. It must be emphasised that inherent soil variability so determined strictly refers to the variability of the mechanical response of soils to cone penetration. The variability of soil response potentially depends on the failure mode (shear for sleeve friction or bearing for tip resistance) and most probably on the volume of soil influenced (averaging effect). To investigate spatial variability, 70 physically homogeneous CPT profiles were first identified from 304 soundings (subdivided into five regional sites) and subsequently assessed for weak stationarity using the modified Bartlett test. Only 40 qc1N profiles and 25 FR profiles were deemed sufficiently homogeneous from both physical and statistical considerations for the scales of fluctuations to be valid and for estimation of the coefficient of variation of inherent soil variability. The majority of the acceptable profiles were found in sandy soils. The remaining profiles are in fine-grained soils, with a few in intermediate soils. Trends in the estimated random field parameters indicate that qc1N is more strongly autocorrelated than FR, probably because qc1N is influenced by a larger volume of soil around the cone tip, and that the mechanical response of cohesionless soils to cone penetration is significantly more variable and erratic than that of cohesive soils. Comparison with literature data indicates that normalisation leads to a decrease in the scale of fluctuation for cone tip resistance and a reduction in the coefficient of variation. A tentative explanation is that normalisation tends to minimise systematic in situ effects that are explainable by physical causes.

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

Cited by 142 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3