Characteristics of cyclic undrained model SANISAND-MSu and their effects on response of monopiles for offshore wind structures

Author:

Liu Haoyuan1ORCID,Kaynia Amir M.2ORCID

Affiliation:

1. Norwegian Geotechnical Institute (NGI), Oslo, Norway.

2. Norconsult, Sandvika, Norway; also Norwegian University of Science and Technology (NTNU), Trondheim, Norway.

Abstract

Optimised design is essential to reduce the cost of monopiles for offshore wind turbines. For this purpose, an in-depth understanding of the behaviour of monopile–soil interaction is required. As more wind farms are planned in seismically active areas, the undrained behaviour of sandy soils (and the possibility of soil liquefaction) and these soils’ effects on monopile cyclic response need critical evaluation. Considering the lack of well-established test programs, implicit three-dimensional (3D) finite-element (FE) methods stand out as a robust tool to identify and highlight the governing geo-mechanisms in monopile design. In this work, an implicit 3D FE implementation of SANISAND-MS for undrained soil behaviour, termed SANISAND-MSu, is deployed in OpenSees to serve these objectives. The role of pore-water pressure on monopile performance is comprehensively investigated by comparisons between drained and undrained soil behaviour. Local soil responses are studied in detail in relation to parameters in laboratory soil testing and application to monopile geotechnical design. The results of simulations are also used to evaluate numerical p–y curves as a function of the number of load cycles on the pile. The conclusions in this work contribute to ongoing research on monopile–soil interaction and support the development of lifetime analysis for monopile–soil systems.

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3