Pore features and seepage characteristics of natural gap-graded sand with two size distributions

Author:

Cui Xianze1ORCID,Wu Dazhou2,Wang Hongxing3ORCID,Ding Shengyong4,Fan Yong4

Affiliation:

1. College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang, P. R. China; Hubei Key Laboratory of Construction and Management in Hydropower Engineering, China Three Gorges University, Yichang, P. R. China; MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences, Beijing, P. R. China.

2. College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang, P. R. China.

3. Hubei Key Laboratory of Disaster Prevention and Mitigation, China Three Gorges University, Yichang, P. R. China.

4. College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang, P. R. China; Hubei Key Laboratory of Construction and Management in Hydropower Engineering, China Three Gorges University, Yichang, P. R. China.

Abstract

Pore features and seepage characteristics of mixed granular materials are of great significance in many subjects, including engineering, for instance geotechnical engineering, petroleum extraction, hydrogeology, environmental science and hydraulic engineering. In this paper, two types of mathematical models are proposed that consider different packing methods for porosity and permeability – namely, the filling model (FM) and the replacement model (RM). On this basis, incomplete coverage (overlap between large and small grains during the replacement process) is considered as the ‘replacement model considering incomplete coverage’ (RMCIC) and the ‘replacement model considering incomplete coverage and roundness’ (RMCICR). Roundness is considered in the ‘filling model considering roundness’ (FMCR), the ‘replacement model considering roundness’ (RMCR) and the RMCICR. Four kinds of natural sand are chosen as the source material, with median grain sizes of 1733, 1050, 449 and 190 μm. All models can be divided into two components – one in which the porosity decreases with large grain ratios and the other in which the porosity increases. When roundness is considered, the RMCICR model has the largest porosity, and the FMCR model has the lowest porosity. In addition, the porosity increases when roundness is considered for all models in this study. The porosity in the RMCICR model better coincides with the test results, which can be explained by the consideration of both incomplete coverage and roundness. The order of porosity values is as follows: RMCICR, RMCR, RMCIC, RM, FMCR and FM. Permeability presents a tendency similar to porosity – that is, permeability decreases first and then increases. Moreover, the slope in the declining stage is relatively small, and the slope in the ascending stage is relatively large. The ratio of large grains to minimum porosity and permeability has significant differences. The results suggest the effectiveness of previous mathematical models.

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3