Cone penetration tests in saturated and unsaturated silty tailings

Author:

Russell Adrian R.1ORCID,Vo Thanh2,Ayala Juan3,Wang Yanzhi1,Reid David3,Fourie Andy B.3

Affiliation:

1. Centre for Infrastructure Engineering and Safety, School of Civil and Environmental Engineering, UNSW Sydney, NSW, Australia.

2. School of Engineering, The University of Warwick, Coventry, UK.

3. School of Civil, Environmental and Mining Engineering, The University of Western Australia, Perth, WA, Australia.

Abstract

Laboratory-controlled cone penetration test results for two silty tailings in a variety of saturated and unsaturated states, obtained using two calibration chambers, are presented then interpreted using a state parameter-based approach. For each, the cone penetration resistances, which increase due to the presence of suction when the tailings are unsaturated, can be normalised using the initial mean effective stress to establish a relationship with the initial state parameter. The relationship is applicable to saturated and unsaturated conditions, as long as the presence of suction hardening as well as the influence of suction on the mean effective stress are accounted for, and as long as the cone penetrations occur under drained conditions. The relationships enable state parameters to be back-calculated from normalised cone penetration resistances. The state parameters enable estimations of the tailings’ peak friction angles for drained loadings as well as their propensities to liquefy during undrained loadings. Application is demonstrated using cone penetration test soundings in the tailings storages from which the samples were taken, showing how in situ void ratios and state parameters, as well as future state parameters if the tailings were to become saturated, can be determined. Close agreements with direct measurements of void ratios are shown.

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3