Calculation of greenhouse gas emissions of urban rail transit systems in China

Author:

Guo Hao1,Zhao Liyuan1,Zang Shuo1,Wei Yun2

Affiliation:

1. Technical Innovation Research Institute of Beijing Subway Operation Co., Ltd, Beijing, China; Beijing Key Laboratory of Subway Operation Safety Technology, Beijing, China

2. Technical Innovation Research Institute of Beijing Subway Operation Co., Ltd, Beijing, China; Beijing Key Laboratory of Subway Operation Safety Technology, Beijing, China; Beijing Subway Operation Co., Ltd, Beijing, China

Abstract

In China, the total energy consumption and greenhouse gas (GHG) emissions will reach considerable levels based on the current speed of urban rail transit system development. Based on the life-cycle assessment theory, this research constructs an urban rail transit system GHG emission assessment method, calculates emission outputs based on resource inputs from actual investigated data and makes a quantitative analysis of GHG emissions. The results show that in recent years, the GHG emission of urban rail transit construction and operation in China is between 2000 × 104 and 4200 × 104 tonnes of carbon dioxide equivalent (tCO2e) per year. The proportions of the construction and operational phases in this emission are 57 and 43%, respectively. In the construction phase, the GHG emission intensity per unit mileage of shield tunnels and per unit area of stations is about 1.3 × 104 tCO2e/km and 3.71 × 104 tCO2e/ha, respectively. In the operational phase, the GHG emission intensity per unit trip is 0.084 kg carbon dioxide equivalent/passenger-km. The entire life-cycle GHG emission per kilometre of urban rail transit systems is 11.69 × 104 tCO2e (with a service life of 50 years) in China. The construction phase and operation phase generated about 18.73 and 81.27% of this emission, respectively. The preliminary conclusions of this study may help shed light on the emission reduction potential of urban rail transit systems and the emission reduction targets in China.

Publisher

Thomas Telford Ltd.

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3