Investigation of the pore structure performance of dune sand mortar with ceramic waste

Author:

Ghrieb Abderrahmane1,Abadou Yacine2ORCID,Bustamante Rosa3,Sánchez de Rojas María Isabel4

Affiliation:

1. Civil Engineering Department, University of Djelfa, Djelfa, Algeria; Laboratory of Development in Mechanics and Materials, University of Djelfa, Djelfa, Algeria

2. Civil Engineering Department, University of Djelfa, Djelfa, Algeria

3. School of Architecture, Universidad Politécnica de Madrid, Madrid, Spain

4. UEX-CSIC Partnering Unit, Eduardo Torroja Institute for Construction Science, Madrid, Spain

Abstract

The use of construction waste in creating concrete and mortar is an important process that not only offers economic benefits but also helps protect the environment by reducing waste in rural and urban areas. This experimental study aims to investigate the effect of adding crushed ceramic waste (CCW) and crushed brick waste (CBW) on the bulk density, workability, compressive and flexural strengths, water absorption and microstructural properties of dune sand mortar. To determine changes in porosity, the study uses the mercury intrusion porosimetry technique to measure porosity and pore size distribution. Scanning electron microscopy and energy-dispersive X-ray spectroscopy analyses are conducted to examine the microstructure and size of the voids using an electron microscope, and photographs of voids in the mortar matrix are taken. By replacing 15% of the sand with CCW and CBW, the compactness and mechanical strength of the dune sand mortar are enhanced, increasing the dynamic modulus of elasticity by around 29 and 26%, respectively. This is due to the pozzolanic activity of these residues, which mainly occur in the form of medium and small capillaries in all the mortars studied, reducing the diameter of the pores.

Publisher

Thomas Telford Ltd.

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3