Granular flow simulation in a centrifugal acceleration field

Author:

Cabrera Miguel Angel1ORCID,Leonardi Alessandro2ORCID,Peng Chong3

Affiliation:

1. Universidad de los Andes, Department of Civil and Environmental Engineering, Carrera, Bogota, Colombia.

2. Politecnico di Torino, Department of Structural, Geotechnical and Building Engineering, Corso Duca degli Abruzzi, Torino, Italy.

3. Engineering Software Steyr GmbH, Berggasse, Steyr, Austria.

Abstract

The use of the geotechnical centrifuge to obtain scaled physical models is a useful tool in geomechanics. When dealing with granular flows, however, the traditional scaling principles are challenged by the complex rheology of the material and by the non-trivial effects of the Coriolis apparent acceleration. In a laboratory centrifuge, obtaining a clear understanding of these effects is further complicated by the technical difficulties in obtaining flows in steady conditions. In this work, the scaling principles for granular flows are studied using a numerical model based on the discrete-element method. In this way it is possible to obtain a steady flow in a rotating reference frame, and to explore the variation of macroscopic properties by changing the scaling factor and the distance from the rotation centre. The outcome is compared with the prediction obtained with a continuum theory for frictional flows. Results show that granular flows scale consistently only when the Coriolis acceleration is negligible, and are severely altered otherwise. The augmented acceleration field is also responsible for an alteration of the flow state, driving the system towards the inertia-driven collisional regime.

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3