Vertical static and dynamic pile-to-pile interaction in non-linear soil

Author:

Kanellopoulos Konstantinos1ORCID,Gazetas George1

Affiliation:

1. National Technical University of Athens, Athens, Greece.

Abstract

A vertically loaded floating pile in clay affects a neighbouring pile by increasing the latter's displacement due to its own load. As a result, a group of rigidly capped piles exhibits a force/settlement ratio (‘vertical stiffness’) that is smaller than the sum of the individual stiffnesses of each pile – ‘efficiency’ in static stiffness less than 1. However, under dynamic steady-state loading the response of the pile group is an oscillatory function of frequency, and at certain frequencies a complete reversal of the static trend occurs, with the elastic dynamic group ‘efficiency’ exceeding not only the static ‘efficiency’, but also unity. To assess the realism of such behaviour, finite-element inelastic soil models were utilised to explore the influence of soil non-linearity on pile-to-pile interaction factors, under both static and dynamic loading. It is found that, with realistically inelastic undrained clay behaviour, the influence of a loaded pile on its neighbour diminishes radically with increasing amplitude of imposed displacement. The presence of a number of in-between piles, as well as the neighbouring pile's own rigidity, has no substantial effect on the interaction. The observed trends are explained by recourse to simple physical arguments. The diagrams provided for the pile-to-pile interaction factor are utilised to obtain the vertical dynamic impedance (i.e. stiffness and damping) of a 2 × 2 and a 3 × 3 rigidly capped pile group. It is found that these impedances are in accord with those resulting from three-dimensional analysis of the complete pile group. The difference between elastic and inelastic efficiency factors is shown to be substantial. The validity of the numerical results is strictly limited to piles in soft clays, whose resisting stress on the pile shaft equals their undrained shear strength.

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3