How particle shape affects the critical state, triggering of instability and dilatancy of granular materials – results from a DEM study

Author:

Nguyen Hoang Bao Khoi1ORCID,Rahman Md. Mizanur1ORCID,Fourie Andy B.2ORCID

Affiliation:

1. UniSa STEM, University of South Australia, Mawson Lakes, SA, Australia.

2. School of Civil, Environmental & Mining Engineering, University of Western Australia, Crawley, WA, Australia.

Abstract

The discrete-element method (DEM) has gained popularity for developing a qualitative understanding of soil behaviour under a critical state soil mechanics (CSSM) framework. Most studies with a three-dimensional assembly of particles have used spheres as representative granular material to reduce computational demands. However, most granular materials – for example, sands – are not rounded, but possess features of angularity. Therefore, ellipsoid and cluster particles with different degrees of eccentricity were used in this study to evaluate the effect of the particle shape on the drained and undrained triaxial loading behaviour after isotropic and K0 consolidation. The particle numerical properties and grain size distributions were kept the same for all specimens, irrespective of particle shape. The critical state data points for spheres and ellipsoids plotted on almost the same critical state line (CSL) in e–log(p′) space, whereas the CSLs of clusters plotted above them. Additionally, M lines shifted downward with increasing sphericity. It was also found that the stress ratio at the triggering of static liquefaction (ηIS = q/p′) in ηIS–ψ space was affected by particle shape and consolidation path. The dilatancy (d = dεvp/dεqp) was also affected by particle shape. It was found that dilatancy parameters for the SANISAND constitutive model are affected by particle shape, which may contribute to an improved understanding of particle shape in constitutive modelling.

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3