Analysing the effect of principal stress rotation on railway track settlement by discrete element method

Author:

Bian Xuecheng1,Li Wei1,Qian Yu2,Tutumluer Erol3ORCID

Affiliation:

1. Department of Civil Engineering, Zhejiang University, Zijingang Campus, Hangzhou, P. R. China.

2. Department of Civil and Environmental Engineering, University of South Carolina, Columbia, South Carolina, USA.

3. Department of Civil and Environmental Engineering, University of Illinois at Urbana, Champaign, Urbana, Illinois, USA.

Abstract

Principal stress rotation induced by moving loads from trains significantly influences railway track settlement accumulation. The stationary cyclic loading commonly adopted to study railway ballast behaviour under repeated train loading cannot fully represent the effects of principal stress rotation, which needs to be properly considered in both laboratory tests and numerical simulations for a better understanding of ballast deformation behaviour. This paper focuses on studying railway ballast deformation behaviour with an emphasis on particle scale interactions under two different loading scenarios – namely, stationary cyclic and moving wheel loading. A ballasted track model consisting of five sleepers was established based on the discrete-element method (DEM) with realistic polyhedron-shaped elements. The numerical model was validated first based on the testing results from a full-scale high-speed railway testing facility at Zhejiang University. Numerical results clearly indicated that moving wheel loading induced larger principal stress rotation than stationed cyclic loading did. Larger principal stress rotation mobilised higher particle rotation and displacement, which further increased particle rearrangements through individual particle rolling and sliding, and potentially could cause accelerated ballast degradation. It is recommended to consider principal stress rotation in ballast settlement predictions to prevent possible underestimation by stationary cyclic loading and its limitations.

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3