Novel experimental technique to model impression piles in centrifuge testing

Author:

Lalicata Leonardo Maria1ORCID,Ritchie Eric2,Stallebrass Sarah Elizabeth3ORCID,McNamara Andrew4ORCID

Affiliation:

1. Assistant Professor, University of Genoa, Genoa, Italy (corresponding author: )

2. PhD student, Ferrovial Innovation Manager, City, University of London, London, UK

3. Professor of Soil Mechanics, City, University of London, London, UK

4. Senior Lecturer, City, University of London, London, UK

Abstract

A novel experimental technology for small-scale centrifuge tests on piled foundations has been investigated. The technology is suitable for bored piles where the pile shaft has been profiled to improve bearing capacity, such as with the impression pile which has an enhanced shaft capacity owing to the small impressions created along the shaft. In previous centrifuge testing, impression piles have been created by pouring resin into a profiled bore. However, in the technique described, a pile made from three-dimensionally (3D)-printed rigid plastic components with a mandrel mechanism is used to create a nodular shaft surface during model making. Once assembled the pile has the same geometry as the cast-in-situ impression pile. 3D-printed plastic piles allow for fast model making and demonstrate excellent repeatability. Because of the ductile behaviour of the soil–plastic interface the impressions improve the performance of a pile over the entire load settlement curve, not just at ultimate capacity. In addition, a greater increase in ultimate capacity was registered for the 3D-printed plastic impression piles compared to similar resin impression piles. At working load, the 3D-printed plastic impression piles outperformed traditional straight-shafted piles by 90%.

Publisher

Thomas Telford Ltd.

Subject

Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3