Volume changes of an unsaturated clay during heating and cooling

Author:

Ng C. W. W.1,Cheng Q.1,Zhou C.1,Alonso E. E.2

Affiliation:

1. Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong

2. Department of Geotechnical Engineering and Geosciences, Universitat Politècnica de Catalunya, Barcelona, Spain

Abstract

Thermally induced soil volume changes can have significant influence on many geotechnical structures. So far, research on thermal volume changes of unsaturated soil is very limited, particularly at temperatures lower than typical room temperature (23°C). The principal objective of this study is to investigate the volumetric behaviour of normally consolidated intact and recompacted low-plasticity clay specimens (loess soil) over a wide thermal cycle ranging from 5 to 53°C using a modified double-cell triaxial apparatus. It is found that contractive volumetric strain increases as the temperature increases. During the cooling process, soil volume keeps contracting until the temperature decreases to 5°C. Different from previous studies in the literature on saturated remoulded illite and natural silty clay, a plastic contraction at a much higher rate is observed from 13 to 5°C for both recompacted and intact loess specimens. The plastic volume changes during cooling are probably because cooling-induced contraction of soil particles leads to particle rearrangements in loess. Moreover, the cooling-induced plastic volume change, which only occurs when the cooling temperature is less than a critical value (13°C for the test conditions considered in this study), cannot be captured by the existing thermo-mechanical models, which predict elastic contraction during cooling. A new yield surface (temperature decrease) is proposed to simulate the observed elastoplastic behaviour during cooling.

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3