Analysing of nano-silica usage with fly ash for grouts with artificial neural network models

Author:

Çelik Fatih1,Yildiz Oğuzhan2,Çolak Andaç Batur3,Bozkir Samet Mufit4

Affiliation:

1. Associate Professor, Civil Engineering Department, Niğde Ömer Halisdemir University, Niğde, Turkey

2. Assistant Professor, Electric and Energy Department, Niğde Ömer Halisdemir University, Niğde, Turkey

3. Associate Professor, Mechanical Engineering Department, Niğde Ömer Halisdemir University, Niğde, Turkey (corresponding author: )

4. Engineer, Civil Engineering Department, Niğde Ömer Halisdemir University, Niğde, Turkey

Abstract

When grout is used to penetrate voids and cracks in soils and rock layers, easy and effective pumping of the grouts is vital, especially for grouting works during geotechnical improvements. For this reason, improving the rheological parameters of cement-based grouts and increasing their fluidity are important for effective grouting injection. In this study, an experimental investigation and analysis using artificial neural network (ANN) models were used to discover how nano silica (n-SiO2) together with fly ash affects the rheological behaviour of cement-based grouts. The effects of nano silica (n-SiO2) additions at different contents by mass (0.0%, 0.3%, 0.6%, 0.9%, 1.2% and 1.5%) on the plastic viscosity and yield stress values of cement-based grouts incorporating fly ash as a mineral additive at different amounts (0% – as a control, 5%, 10%, 15%, 20%, 25% and 30%) were investigated. Using the experimental data obtained, a feed-forward (FF) back-propagation (BP) multi-layer perceptron (MLP) artificial neural network (ANN) was developed to predict the plastic viscosity and yield stress of cement-based grouts with nano silica nanoparticle additives. The ANN model developed can predict the plastic viscosity and yield stress values of cement-based grouts containing nano silica nanoparticle-doped fly ash with high accuracy.

Publisher

Thomas Telford Ltd.

Subject

General Materials Science,Building and Construction

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3