Information recognition of pathogenic modules in gene statistics of big data

Author:

Li Xiaoxia1,Chang Minhui1,Wang Lianhua1

Affiliation:

1. School of Mathematics and Information Technology, Yuncheng University, Yuncheng, China

Abstract

Aiming at the problem that the selection of the F value is too small when the negative outliers are removed by traditional recognition methods, a recognition method of pathogenicity module information in gene statistics of high-dimensional big data is proposed. This method involves using gene chips to obtain gene expression data, constructing a dynamic network to screen pathogenic module genes, preprocessing gene expression data, calculating the maximum information coefficient characteristics of pathogenic module information by using a feature matrix, standardizing the processing of pathogenic module information data, establishing pathogenic module information recognition rules and completing pathogenic module information in gene statistical interest recognition of high-dimensional big data interest. The experimental results show that compared with the traditional recognition methods, the disease module information recognition method in high-dimensional big data gene statistics is less affected by the K value and the actual recognition accuracy is up to 98%.

Publisher

Thomas Telford Ltd.

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3