Comparative study of sustainable drainage systems for refugee camps stormwater management

Author:

Ajibade Oluwatoyin Opeyemi1ORCID,Tota-Maharaj Kiran2

Affiliation:

1. Faculty of Engineering & Science, Department of Engineering Science, University of Greenwich, Chatham, UK (corresponding author: )

2. Faculty of Engineering & Technology, Division of Civil and Engineering & The International Water Security Network, University of West of England, Bristol, UK

Abstract

To meet the United Nations 2030 Sustainable Development Goals (SDGs 2030) without leaving vulnerable people such as the refugees and internally displaced persons (IDPs) behind, it is important to upgrade drainage systems across refugee and IDP camps using innovative technologies such as sustainable drainage systems (SuDS). Retrofitting the existing surface water drainage systems using SuDS technologies can improve the living conditions of the refugees by addressing environmental challenges such as flooding, erosion and outbreak of water-related diseases across the camps. In this paper, evaluation of pollutant removal and hydraulic performance of laboratory experimental set-up of SuDS technologies mimicking stormwater management conditions for African IDP and refugee camps is presented. Two rigs of engineered wetlands and two rigs of filter drains (FDs) constructed using locally sourced low-cost sustainable materials were evaluated for stormwater attenuation and pollutants removal efficacies. The results showed that both the engineered wetland systems and FDs for simulated refugee camp conditions showed a significant reduction in the organic loading levels for chemical oxygen demand, biochemical/biological oxygen demand and turbidity and nutrients present in the stormwater. In addition, the engineered wetlands and FDs are effective in attenuating significant proportion of precipitation.

Publisher

Thomas Telford Ltd.

Subject

Civil and Structural Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3