Affiliation:
1. Chemistry Department, State University of Londrina, Londrina, Brazil
2. Physics Department, State University of Londrina, Londrina, Brazil
Abstract
New technologies have been investigated to replace the use of lithium and cobalt ions, raw materials of the cathode active material of lithium-ion batteries. Among the emerging technologies stands out one that uses sodium (Na+) and iron ions. Sodium iron oxide (NaFeO2) has polymorphism, with only the α phase being active for the reversible deintercalation of sodium ions, so this phase has potential application as an electroactive material in green sodium-ion batteries. The novel synthesis of α-sodium iron oxide through the sol–gel route, which provides a material with small particles and high crystallinity, is described in this work. Through X-ray diffraction and Rietveld refinement, it was found that the initial chelating agent/metals ratio affects the concentration of the α and β phases at the end of the synthetic route. The α-sodium iron oxide, obtained with an appropriate chelating agent/metals ratio, showed high purity and crystallinity. A discharge capacity of approximately 110 mAh/g was achieved when the α-sodium iron oxide electrode, obtained through the sol–gel route, was cycled from 1.00 to 4.00 V against sodium ions/sodium (Na), corresponding to the intercalation of approximately 0.5 sodium ions of the Na1−x FeO2 formula. The success of the synthesis of the α-sodium iron oxide phase can lower the cost and ensure the economic viability of green sodium-ion batteries.
Subject
Materials Chemistry,Polymers and Plastics,Pollution
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献