Stiffening rates of blended-cement pastes in hot climates

Author:

Alshamsi A. M.1

Affiliation:

1. UAE University PO Box 17555, Civil Engineering Alain, United Arab Emirates

Abstract

The influence of microsilica, ground granulated blast-furnace slag (ggbs) and a set-retarding superplasticiser on the setting of pastes at different curing temperatures was studied. The replacement level of ordinary Portland cement (OPC) by microsilica was 10%. Replacement levels of OPC by ggbs were 30, 50 and 70%. In addition to this, three different sources of ggbs from three countries were tested. Ambient temperatures of 25, 35 and 50°C were simulated. The results show that at 25°C, microsilica retarded setting only slightly whereas the ggbs and the set-retarding superplasticiser resulted in significant retardation. At the other two curing temperatures, the retardation effects of the ggbs and the superplasticiser diminished.

Publisher

Thomas Telford Ltd.

Subject

General Materials Science,Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An investigation of the compressive strength of concrete by substituting fine aggregate with sawdust;Asian Journal of Civil Engineering;2023-04-19

2. Ground Granulated Blast-Furnace Slag;RILEM State-of-the-Art Reports;2017-12-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3