Geogrid-soil interaction: experimental analysis of factors influencing load transfer

Author:

Derksen J.1ORCID,Fuentes R.2ORCID,Ziegler M.3ORCID

Affiliation:

1. Research Assistant, Institute of Geomechanics and Underground Technology, RWTH Aachen University, Aachen, Germany,(corresponding author)

2. Professor, Institute of Geomechanics and Underground Technology, RWTH Aachen University, Aachen, Germany,

3. Managing Director, Professor (Emeritus), ZAI Ziegler und Aulbach Ingenieurgesellschaft mbH, Aschaffenburg, Germany,

Abstract

This paper presents interaction experiments with transparent soil to investigate the load transfer at the interface of different geosynthetic reinforcements. Microscopic interaction performance was evaluated in terms of mobilised tensile loads and interfacial shear stresses resulting from the relative movement between geosynthetic and soil. The effects of geogrid aperture size, tensile stiffness, geogrid type and reinforcement configurations on the load transfer were analysed. It was found that with increasing soil deformation, the contribution of friction to the total load transfer decreased and the transverse ribs were increasingly activated. The interfacial shear stresses were reduced as the ratio of geogrid aperture to mean particle size increased, resulting in lower geogrid loads. Higher geogrid loads were mobilised with increasing tensile stiffness of the reinforcement, but lower displacements of geogrid and adjacent soil occurred. Consistent results were found for woven PET and laid PP geogrids. The most effective load transfer was obtained for the aperture configuration with two closely spaced transverse members at each rib, as the soil particles were additionally confined. When the geogrid was attached to a nonwoven geotextile, the separation function was enabled, but the reinforcement performance of the geocomposite was lower due to reduced particle-aperture interaction.

Publisher

Thomas Telford Ltd.

Subject

Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3