Mechanisms controlling the hydraulic conductivity of anionic polymer-enhanced GCLs

Author:

Norris A.1ORCID,Scalia IV J.2ORCID,Shackelford C. D.3ORCID

Affiliation:

1. Civil Engineer EIT, Stantec Inc., Denver, Colorado, USA;(corresponding author)

2. Associate Professor, Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado, USA;

3. Head of Department and Professor, Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado, USA;

Abstract

The hydraulic conductivity (k) of specimens of enhanced-bentonite geosynthetic clay liners (EB-GCLs) comprising anionic polymers permeated with two concentrated salt solutions, 500 mM NaCl and 167 mM CaCl2, was measured to determine the effects of polymer properties and specimen preparation method on the k and the associated roles of polymer retention and elution in dictating the measured k. The results of hydrogel formation tests illustrated that poly(acrylic acid) hydrogel was formed in solutions tested during EB-GCL hydration. A dry sprinkling method of specimen preparation resulted in low k (≤5.5 × 10−11 m/s) in multiple EB-GCLs, with a low fraction (≤2.5%) of retained polymer. In contrast, polymer elution from EB-GCLs prepared using a dry mixing method resulted in interaggregate seepage and an increase in k. Higher polymer retention occurred for the wet-mixed EB-GCLs, but did not directly correlate to low k. The long-term k of the EB-GCLs is dependent on several factors, including (i) formation of hydrogel, (ii) mobilization of hydrogel into and blocking of the most conductive pores, (iii) balance of seepage forces and hydrogel crosslink bond strength, (iv) kinetics of hydrogel formation, and (v) adsorption of polymer to the surfaces of the bentonite particles or aggregates of particles.

Publisher

Thomas Telford Ltd.

Subject

Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3