Preparation and characterization of expanded dickite/decanoic acid phase-change materials

Author:

Su Hao1,Ma Zhonghua1,Ding Mingtao1,Li Ye1,Dang Lianfa1,Yang Kuo1,Li Fangfei1,Xue Bing1

Affiliation:

1. Key Laboratory of Automobile Materials of Ministry of Education, Changchun, China; College of Materials Science and Engineering, Jilin University, Changchun, China

Abstract

The leakage of phase-change materials presents a significant challenge that impedes their application. Loading porous materials onto phase-change materials is an effective approach to addressing this issue. In this study, porous expanded dickite as a carrier was utilized to load decanoic acid and create a composite phase-change material. The loading content of decanoic acid was varied to obtain different composite phase-change materials. Fourier transform infrared spectroscopy analysis confirmed the formation of hydrogen bonds between the expanded dickite carrier and decanoic acid. Scanning electron microscopy images and energy-dispersive X-ray spectroscopy mapping results demonstrated that decanoic acid was evenly dispersed on the expanded dickite carrier without any agglomeration. The expanded dickite carrier effectively immobilized decanoic acid through hydrogen bonding, thereby preventing leakage, as long as the loading content of decanoic acid did not exceed 60%. The higher thermal conductivity of the expanded dickite carrier promoted the thermal conductivity of the expanded dickite/decanoic acid composite phase-change materials, enhancing the responsiveness of the composite phase-change materials to ambient temperature. The composite phase-change material containing 60 wt% decanoic acid exhibited excellent endothermic/exothermic cycle stability, and after six cycles, its latent heat remained stable.

Publisher

Emerald

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Editorial: Materials with multidisciplinary applications;Emerging Materials Research;2024-06-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3