The structural and optical properties of PVA/CMC copolymer cured by UV-irradiation at different times

Author:

Abead Sarah H1,Abbas Khaldoon N1,Hadi Al-Kadhemy Mahasin F1

Affiliation:

1. College of Science, Physic Department, Mustansiriyah University, Baghdad, Iraq

Abstract

Polyvinyl alcohol (PVA)/Carboxymethyl cellulose (CMC) blend films with equal amounts (0.25 g) of both polymers were prepared via a simple and low-cost comparative casting method. Then, the PVA/CMC blend films were exposed to UV-irradiation for varied time intervals (1, 12, 26, 32, 40, and 48 h). The UV-irradiations effect on the physical properties of as-prepared films including the structure, morphology, composite and optical properties (transmittance, absorbance, and band-gap (Eg)) was examined. FESEM images display that UV-irradiation has a strong effect on the shape of PVA/CMC blend films. The XRD patterns show various crystalline qualities in the microstructure of as-synthesis samples. The FTIR spectra demonstrate that UV-irradiation time and CMC film had a positive impact on the blend polymer structure since covalent connections were formed between CMC and PVA. Furthermore, the analysis results of optical inspections show the absorbance of the PVA/CMC films was improved with an increment of irradiation times from (1 to 40 h). An important tunning of Eg values of blend films was realized. It shows a slightly increased from (4.64 eV to 4.84 eV) with increasing irradiation time from (1 to 40 h). The Eg value (3.21 eV), however, displayed an inverted behaviour due to an increased irradiation time of 48 h, this reduction can be ascribed to the creation of defects inside the blend band gap. Finally, the physical properties modification of PVA/CMC blend films using UV-Irradiation makes it an amazing contender in the optoelectronic area.

Publisher

Thomas Telford Ltd.

Subject

Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Editorial: Materials with multidisciplinary applications;Emerging Materials Research;2024-06-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3