Deep learning prediction of gamma-ray-attenuation behavior of KNN–LMN ceramics

Author:

Malidarre Roya Boodaghi1,Arslankaya Seher2,Nar Melek2,Kirelli Yasin3,Erdamar Isık Yesim Dicle4,Karpuz Nurdan5,Dogan Serap Ozhan6,Malidarreh Parisa Boodaghi7

Affiliation:

1. Hadaf Institution of Higher Education, Sari, Iran; Physics Department, Payame Noor University, Tehran, Iran

2. Industrial Engineering Department, Sakarya University, Serdivan, Turkey

3. Istinye University, Istanbul, Turkey

4. Faculty of Education, Dicle University, Diyarbakir, Turkey

5. Amasya University, Amasya, Turkey

6. Engineering Faculty, Beykent University, Istanbul, Turkey

7. Electrical Engineering Department, Iran University of Science and Technology, Tehran, Iran

Abstract

The significance and novelty of the present work is the preparation of non-lead ceramics with the general formula of (1 − x)K0.5Na0.5NbO3–xLaMn0.5Ni0.5O3 (KNN–LMN) with different values of x (0 < x < 20) (mol%) to examine the shielding qualities of the KNN–LMN ceramics. This is done by carrying out Phy-X/PSD calculation and predicting the attenuation behavior of the samples by utilizing the deep learning (DL) algorithm. From the attained results, it is seen that the higher the x (concentration of LMN in the KNN–LMN lead-free ceramics), the better the shielding proficiency observed in terms of gamma-shielding performance for the chosen KNN–LMN-based lead-free ceramics. In all sections, good agreement is observed between Phy-X/PSD results and DL predictions.

Publisher

Thomas Telford Ltd.

Subject

Condensed Matter Physics,General Materials Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3