Investigating MoP bearing wear behavior in a hip simulator with muscular properties

Author:

Bahçe Erkan1ORCID,Karaman Derya2ORCID

Affiliation:

1. Department of Mechanical Engineering, Inonu University, Malatya, Turkey

2. Department of Mechanical Engineering, Karadeniz Technical University, Trabzon, Turkey

Abstract

Metal-on-polyethylene (MoP) hip replacements with a CoCrMo alloy femoral head and an ultrahigh-molecular-weight polyethylene (UHMWPE) acetabular cup are strongly preferred due to their high clinical success. Despite this success, the wear of the bearing surfaces that causes a reduction in the prosthetic use of joint prostheses is still a baffling problem that cannot be solved. Although much research has been done on the tribological behavior of UHMWPE, there are a limited number of studies on the UHMWPE wear mechanism of all components in a hip prosthesis. This study aimed to determine the effect of all components of a total hip prosthesis on the wear behavior of UHMWPE according to three different gait cycles. The wear tests performed at the hip simulator were performed with reference to the hip joint movements and a maximum of 3000 N loads specified in ISO 14242-1. In addition to the abrasive and fatigue wear types of UHMWPE undercoat cups. It was observed that the third-body wear type, which was buried on the surface of polyethylene bearing Ti6Al4V alloy, occurred after 5 million cycles. As a result, according to wear test based on friction elements, it was determined that all hip prosthetic components play an active role in polyethylene wear due to repetitive movement and loading. Moreover, it was concluded that the wear model presented by finite-element analysis can predict the formation of wear in hip prostheses in a reasonable manner.

Publisher

Thomas Telford Ltd.

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3