Spar concrete monolithic design for offshore wind turbines

Author:

Campos Alexis1,Molins Climent2,Gironella Xavier3,Trubat Pau2

Affiliation:

1. Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya, Barcelona, Spain (corresponding author: )

2. Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya, Barcelona, Spain

3. LIM/UPC, Maritime Eng. Laboratory, Universitat Politècnica de Catalunya, Barcelona, Spain

Abstract

Significant research efforts are now being directed at floating offshore wind turbines. The main challenge posed by floating wind turbines is the high construction and installation costs of the substructure, which make it too expensive for commercial exploitation in the current energy market. With the aim of achieving a cost-effective floating platform for offshore wind turbines, a new concept of a monolithic floating spar buoy is hereby presented. The monolithic concrete structure includes both the tower and the floater, built as a continuous single piece. This new concept offers a significant cost reduction during the construction phase and also while in operation, because the platform becomes almost free of maintenance during its lifetime. The main dimensions and the hydrostatic and hydrodynamic properties are presented, including a basic structural assessment of the platform to ensure its structural integrity. The construction and installation processes are presented, taking into account the special requirements of the monolithic design. Finally, a cost comparison between a steel and an equivalent concrete platform design has been performed, showing a material cost reduction larger than 60% in the case of the concrete design.

Publisher

Thomas Telford Ltd.

Subject

Ocean Engineering

Reference15 articles.

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3