Numerical investigation of sand sliding methods for hydro-morphodynamic modelling

Author:

Bordbar Amir1,Sharifi Soroosh2,Hemida Hassan3

Affiliation:

1. PhD Graduate, Department of Civil Engineering, University of Birmingham, Birmingham, UK (corresponding author: )

2. Lecturer, Department of Civil Engineering, University of Birmingham, Birmingham, UK

3. Reader, Department of Civil Engineering, University of Birmingham, Birmingham, UK

Abstract

In numerical modelling of scour around riverine and coastal structures using a hydro-morphodynamic model, a discrete sand sliding procedure needs to be implemented to avoid the occurrence of unrealistic bed profiles. In this study, two commonly employed sand sliding techniques, namely, the artificial transport rate method (ATRM) and the geometry-based method (GBM), are implemented in OpenFOAM and their performances are evaluated for five three-dimensional test cases. The test cases are classified into cases with and without sediment transport induced by a flow field. In the first three test cases, in the absence of a flow field, sand heap avalanches for different geometries and bed boundary grid structures are modelled to compare the methods in terms of simulation time and mass continuity. In test cases 4 and 5, in the presence of a flow field, the sensitivity of the sand sliding methods coupled with a hydro-morphodynamic model to different bed mesh structures is evaluated in modelling scour. The results of the analysis demonstrate that modelling of the sand sliding procedure using ATRM requires higher computational time, while its results are highly independent of the bed mesh structure with lower mass continuity error, <0.2% in all test cases, in comparison with GBM.

Publisher

Thomas Telford Ltd.

Subject

Ocean Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Editorial;Proceedings of the Institution of Civil Engineers - Maritime Engineering;2022-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3